Preface

This textbook provides, in a compact form, the fundamental knowledge in the science of railway operation in a close connection with signalling principles and traffic control technologies. It was written both as a tutorial for students of railway-related programs and as a reference for people in the industry.

But different from most other railway-related textbooks, it does not explain how the railway works in a single country. Due to the historical development, the operating procedures and terms of the railways in different countries differ significantly, probably much more than in any other field of technology. Even very basic terms and definitions may vary extremely. First, there are essential differences between the North American railways and railways that follow European operating procedures. And second, even within Europe, operation and signalling differ significantly between railways that follow more the British and those that follow more the German principles. And, as if this were not enough, in many countries there are also differences between the operating principles of the standard railway networks and light rail systems.

But, regardless of these differences in the operating philosophies, the basic principles of movements of railway vehicles are always the same. Although written from a European point of view, this book tries a generic look at railway operation without concentrating on the operating philosophy of a single railway. But where it makes sense, it is always mentioned if an operating procedure or signalling principle could only be found in a specific country or groups of countries. After an introductory chapter on basic terms and definitions, the second chapter provides some background on train movement dynamics. The following chapters on train separation and interlocking principles form the main part of the book. Other chapters cover capacity research, scheduling, and traffic management.

The terminology used in this book is neither pure British nor pure North American. I always tried to choose terms that are more internationally used. Following suggestions from readers of the first edition, selected terms were changed to ensure a more generic description of the railway
system. For a better understanding, a glossary was added with definitions of more than 200 basic terms of railway operation and control.

The information presented in this book is in no way intended to supersede or negate any rules, regulations, or instructions of government bodies or railway companies. Further, it is not intended to conflict with any currently effective manufacturers operating, application, or maintenance instructions and/or specifications.

I wish to thank Thomas White from VTD Rail Publishing for his support in publishing this book. Furthermore, I thank Dr. Martin Feuchte, former member of the editorial staff of B. G. Teubner (now Vieweg + Teubner), for the permission to use selected passages and diagrams from my German textbook “Systemtechnik des Schienenverkehrs” that was first published by Teubner in 1999.

Braunschweig (Germany) Joern Pachl
September 2009
Contents

1 Basic Terms of Railway Operation .. 1
1.1 Classification of Railway Systems .. 1
1.2 Basic Track Elements ... 3
1.3 Basic Signal Arrangements .. 13
1.4 Movements of Railway Vehicles ... 23
1.5 Modes of Operation ... 30
1.5.1 Signal-controlled Operation .. 30
1.5.2 Non Signal-controlled Operation .. 31

2 Dynamics of Train Movements .. 33
2.1 Tractive Effort ... 33
2.2 Resistances .. 34
2.2.1 Line Resistance ... 34
2.2.2 Train Resistance .. 38
2.3 Grade-Speed Diagram .. 39
2.4 Running Time Calculation ... 41

3 Spacing Trains ... 45
3.1 Theory of Train Separation .. 45
3.1.1 Train Separation in Relative Braking Distance 45
3.1.2 Train Separation in Absolute Braking Distance 46
3.1.3 Train Separation in Fixed Block Distance 47
3.2 Non Signal-controlled Operation ... 48
3.2.1 Timetable and Train Order (T & TO) .. 48
3.2.2 Radio-Based Occupation Control Systems 50
3.2.2.1 Track Warrant Control (TWC) .. 50
3.2.2.2 Direct Traffic Control (DTC) ... 52
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 Signalled Fixed Block Operation</td>
<td>52</td>
</tr>
<tr>
<td>3.3.1 Basic Rules of Fixed Block Operation</td>
<td>53</td>
</tr>
<tr>
<td>3.3.2 Blocking Time and Headway Theory</td>
<td>54</td>
</tr>
<tr>
<td>3.3.3 Signals for Train Movements</td>
<td>60</td>
</tr>
<tr>
<td>3.3.3.1 Types of Signals</td>
<td>60</td>
</tr>
<tr>
<td>3.3.3.2 Principles of Signalling</td>
<td>62</td>
</tr>
<tr>
<td>3.3.3.3 Signalling of Short Block Sections</td>
<td>68</td>
</tr>
<tr>
<td>3.3.4 Block Systems</td>
<td>71</td>
</tr>
<tr>
<td>3.3.4.1 Control Logic of Block Systems</td>
<td>72</td>
</tr>
<tr>
<td>3.3.4.2 Manual Block</td>
<td>74</td>
</tr>
<tr>
<td>3.3.4.3 Automatic Block</td>
<td>82</td>
</tr>
<tr>
<td>3.3.4.4 Absolute Permissive Block (APB)</td>
<td>93</td>
</tr>
<tr>
<td>3.4 Automatic Train Protection</td>
<td>94</td>
</tr>
<tr>
<td>3.4.1 Intermittent ATP</td>
<td>94</td>
</tr>
<tr>
<td>3.4.2 Continuous ATP</td>
<td>98</td>
</tr>
<tr>
<td>3.4.3 European Train Control System (ETCS)</td>
<td>102</td>
</tr>
<tr>
<td>3.5 Radio-based Train Control</td>
<td>105</td>
</tr>
<tr>
<td>3.5.1 Basic Principles</td>
<td>105</td>
</tr>
<tr>
<td>3.5.2 Radio Electronic Token Block</td>
<td>106</td>
</tr>
<tr>
<td>3.5.3 Radio-based Block with Virtual Block Sections</td>
<td>107</td>
</tr>
<tr>
<td>3.5.4 Radio-based Moving Block</td>
<td>108</td>
</tr>
<tr>
<td>4 Interlocking Principles</td>
<td>109</td>
</tr>
<tr>
<td>4.1 Safe Routes through an Interlocking</td>
<td>109</td>
</tr>
<tr>
<td>4.1.1 Interlocking between Points and Signals</td>
<td>112</td>
</tr>
<tr>
<td>4.1.2 Route Locking</td>
<td>114</td>
</tr>
<tr>
<td>4.1.3 Conflicting Routes</td>
<td>119</td>
</tr>
<tr>
<td>4.1.4 Flank Protection</td>
<td>120</td>
</tr>
<tr>
<td>4.1.5 Crosslock</td>
<td>124</td>
</tr>
<tr>
<td>4.1.6 Overlaps</td>
<td>125</td>
</tr>
<tr>
<td>4.1.7 Intermediate Points</td>
<td>129</td>
</tr>
<tr>
<td>4.1.8 Locking between Interlockings</td>
<td>130</td>
</tr>
<tr>
<td>4.1.9 Command Interlocking</td>
<td>131</td>
</tr>
<tr>
<td>4.1.10 Track Clear Detection</td>
<td>132</td>
</tr>
<tr>
<td>4.1.11 Automatic Working of a Route</td>
<td>132</td>
</tr>
</tbody>
</table>
CONTENTS

4.2 Signals in Interlocking Areas .. 133
 4.2.1 Interlocking Signals for Train Movements 134
 4.2.2 Shunting Signals .. 135
 4.2.3 Signalling of Converging Terminal Tracks 137
4.3 Internal Logic of Interlocking Systems 138
 4.3.1 Tabular Interlocking ... 139
 4.3.1.1 Cascade Locking ... 139
 4.3.1.2 Route-related Locking .. 141
 4.3.2 Geographical Interlocking ... 143
4.4 Interlocking Machines ... 146
 4.4.1 Mechanical Interlocking .. 146
 4.4.2 Electric and Electro-pneumatic Interlocking 149
 4.4.3 Relay Interlocking .. 151
 4.4.4 Computer-based Interlocking .. 153
 4.4.5 Interlocking Appliances for Hand Throw Points 154
4.5 Blocking Time in Interlocking Areas 156

5 Capacity Research ... 160
 5.1 Dividing a Railway Network in Different Parts
 for Capacity Research ... 160
 5.2 Basic Theory of Capacity Research 162
 5.2.1 Waiting Time Diagram ... 162
 5.2.2 Recommended Area of Traffic Flow 166
 5.3 Research Methods .. 169
 5.3.1 Capacity of Lines .. 171
 5.3.1.1 Analytic Methods ... 171
 5.3.1.2 Simulation ... 181
 5.3.2 Capacity of Interlocking Arrangements 183
 5.3.3 Capacity of Terminal Tracks ... 191
 5.4 Improving Capacity .. 193

6 Scheduling ... 199
 6.1 Traffic Diagrams ... 199
 6.2 Scheduled Running Time ... 201
RAILWAY OPERATION AND CONTROL

6.3 Headways and Buffer Times 204
6.4 Clock Face Timetables ... 208
6.5 Scheduling Methods .. 211
6.5.1 Manual Scheduling ... 212
6.5.2 Computer-based Scheduling 214
6.6 Quality Assessment in Scheduling 216

7 Control of Railway Operation 220

7.1 Traffic Control with Local Operators 220
7.1.1 Non Signal-controlled Lines 220
7.1.2 Signal-controlled Lines 221
7.1.3 Dispatcher Sheets 223
7.2 Centralised Traffic Control 224
7.3 Automation Technologies 225
7.3.1 Train Describers 226
7.3.2 Automatic Route Setting 228
7.3.3 Computer-based Dispatching 234
7.4 Control Centres ... 236

Symbols in Track and Signal Diagrams 240

Glossary .. 242

Suggested Reading .. 261

Index ... 263

Selected illustrations were provided by:

Bodo Schneider (4.40)
Holger Koetting (4.35)
Reinhard Schumacher (4.38)
Thomas White (4.32, 4.36, 4.37, 7.2)

All other illustrations by the author.